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1. INTRODUC_ON

One of the current challenges in weather and

climate studies is to develop a better understanding of

the surface-atmosphere interactions that play an

important role in the representation of hydrologic

processes within atmospheric models, and the spatial

and temporal scales at which these processes need to

be modeled. Development of better representations of

land surface processes in coupled surface-atmosphere
models should lead to improved understanding of

land-atmosphere interactions from mesoscale

circulations created by surface vegetation

discontinuities up to climate change processes

associated with changes in natural ecosystems.

The natural heterogeneity of land surfaces at

basically all spatial scales poses serious difficulties for

atmospheric and climate modelers. A single grid cell

of an atmospheric model, having dimensions of tens to
hundreds of kilometers, often contains a mixture of

diverse land types such as forest, agricultural and open
water surfaces. This condition has led many

researchers to attempt to develop physically realistic

yet computationally efficient techniques to account for

this variability.

The objective of this paper is to present a method,
transferable to a multitude of spatial and temporal

domains, for use of high-resolution remote sensing
measurements to account for spatial variability of

surface properties within a grid cell of a coupled land-

atmosphere model. Candidate surface properties
include Leaf Area Index (LAD, albedo, surface
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temperature, precipitation, soil moisture and other

quantities that may be observed or derived from

remote sensors. We present an example in which LAI
distributions for various landcover classes are

estimated from the Normalized Difference Vegetation

Index (NDVI). This technique provides a means by

which high-resolution surface information may be

simulated given information about the basic surface
state obtained from low-resolution satellite imagery or

surface/remote sensing data assimilation. The

resulting statistical representation of variability is

appropriate for land surface model applications in

which surface processes are aggregated up to scales

suitable for incorporation into atmospheric models.

The following observations and assumptions have

guided the development of our methodology:

• The representation of surface energy fluxes in

land surface models is based on flux-gradient

relationships which are valid only for a homogeneous

'patch' within which surface properties are uniform.

• Atmospheric model grid cells cannot be
considered truly homogeneous, and thus the physical

equations used to diagnose fluxes are not strictly valid

for grid-scale fluxes. The relationships between

surface properties (temperature, moisture, roughness)

and processes (energy fluxes) at these scales are poorly
understood.

• Many of the relationships between surface

properties and processes are non-linear to some extent,
so that use of a mean value to represent the surface

state for a model grid area of hundreds of square

kilometers or larger is inappropriate in many cases.
This has been demonstrated by Wetzel and Chang

(1988), who examined the soil moisture-
cvapotranspiration relationship, and by Bonan et al.

(1993) who found that surface fluxes are strongly

influenced by sub-grid scale variability of LAI,
stomatal resistance and soil moisture. The degree of

non-linearity between various surface properties and

processes is currently being examined by many



investigators.Hall et al. (1992)examinedscale

dependence of remotely-sensed surface parameters

using data from FIFE (First ISLSCP (International
Satellite Land Surface Climatology Project) Field

Experiment) within the SiB model (Sellers et al.,
1986). In their analysis, remotely-sensed surface

temperature and vegetation index at 120 m resolution
were aggregated up to a model grid of 1 kin. Their

results indicate that scaling had an insignificant

impact on their vegetation index and a moderate

impact on surface temperature. However, the

universal applicability of these results are unclear

because the FIFE region is relatively homogeneous

and because the aggregation was over less than an

order of magnitude in length.
• Due to fundamental differences in surface

biophysical properties (roughness, LAI, etc.) between

different landscape elements (e.g. bare vs. vegetated

surfaces; water vs. land) and the non-linear effects

discussed above, it is problematic to combine in any

meaningful way values of surface properties from the

distinct patches to obtain 'effective' values-i.e., those

which can be applied for the entire grid cell to

accurately diagnose surface energy fluxes.

2. DATA SETS

The data used in this study were collected as part

of the Convection and Precipitation/Electrification

Experiment (CAPE), conducted in central Florida

during the period 8 July through 18 August 1991

(Williams et al., 1992). The study domain for the

analysis presented herein covers an area of

approximately 20,000 km 2 in east central Florida,

mostly south and west of Merritt Island. Detailed

hydrometeorological analysis and modeling have been

performed using the CaPE data to provide baseline

estimates of surface energy and water fluxes (Laymon

and Crosson, 1995). Remotely-sensed data from

SPOT and other platforms, as well as landcover

classification imagery were utilized in this project.

These data have been used together to develop our

method for characterizing sub-grid scale variability of

surface properties, in this case LAI.

2.1 Landcover Classification

Landcover data for the state of Florida were

obtained from the Florida Game and Freshwater Fish

Commission. The landcover classification was

performed using data from Landsat-TM at 30 m
resolution. Reduced resolution (90 m) data were used

in this study because the 30 m product was not
available for the entire study area. Twenty-two

landcover types were identified in this classification.

For modeling purposes, this was generalized to ten

basic land types similar to those used in the Biosphere-

Atmosphere Transfer Scheme (BATS; see Dickinson
et al., 1986) and the Marshall Land Surface Processes

Model (Laymon and Crosson, 1995). Table 1 lists the

land classes and the percent coverage of each within

the study area.

Table 1. Descriptive statistics on NDVI and LAI for each of the landcover classes in the CAPE study area.

LC class Description % NDVI NDVI LAI LAI Coefficient Coefficient

coverage Mode 99% Mean Max a b

1 Short grass 25.1 0.51 0.62 2 4 0.080 6.301

2 Evergreen shrub 20.9 0.51 0.63 3 5 0.342 4.257
3 Deciduous shrub 1.3 0.56 0.64 3 5 0.084 6.385

4 Evergreen needleleaf tree 8.0 0.57 0.65 5 7 0.455 4.206
5 Mixed woodland 0.5 0.60 0.66 5 7 0.173 5.608

6 Deciduous broadleaf tree 12.7 0.60 0.67 5 7 0.280 4.807

7 Evergreen broadleaf tree 2.2 0.55 0.65 5 7 0.786 3.365

8 Swamp/Marsh 8.3 0.43 0.61 2 4 0.382 3.851

9 Aquatic 9.6 0.00 0.46 0 0 N/A N/A
10 Barren 11.4 0.00 0.62 0 0 N/A N/A

2.2 SPOT NDVI Data

NDVI values at 20 m resolution have been

obtained using data from three SPOT (Systeme pour
l'Observation de la Terre) satellite overpasses during

the study period. Results are presented here for the

most cloud-free of these images, 12:08 LDT on 9 July,
1991. NDVI was calculated from SPOT HRV-2

channels 2 and 3, which have bandpass wavelengths of

0.61-0.68 p.m and 0.79-0.89 p.m, respectively. Cloud



filtering, based on threshold values in each of the three

spectral bands, was applied to eliminate cloud pixels

from the analysis.

The probability density functions (PDFs) of NDVI
have been estimated by calculating histograms for

each of the ten landcover types within the study area.

This analysis was conducted in a Geographic

Information System (GIS) by overlaying the NDVI and

landcover images, and segregating the NDVI pixels
based on the associated landcover class. The NDVI

histogram for landcover type 1 (short grass) using
coincident SPOT and landcover imagery for the study

area is shown in Figure 1. This is the dominant

landcover for the study area, occupying more than

25% of the region. The NDVI distribution is slightly

positively skewed with a mean of 0.48, median of 0.50
and mode of 0.51.
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Figure 1. SPOT NDVI frequency histogram for pixels

corresponding to landcover type short grass.

3. METHOD

3.1 Existing Techniques for Representing Sub-Grid

Scale Heterogeneity

There are currently two basic approaches for

parameterizing sub-grid scale variability of surface
characteristics. The first paradigm ('mosaic' method)

treats the surface within a model grid cell as a

patchwork of different land types, each patch being

homogeneous with respect to a set of defined surface

parameters (e.g., Avissar and Pielke, 1989). A second

paradigm uses statistical distributions (represented by

PDFs) to quantify land surface variability. This
'statistical/dynamical' approach has been applied to

various surface properties: soil moisture (Entekhabi

and Eagleson, 1989); topography and soils

(Famiglietti and Wood, 1991); LAI and stomatal

resistance (Bonan et al., 1993). Avissar (1991) and Li

and Avissar (1994) combined the two approaches by

considering the PDFs of surface characteristics within

each of a set of surface patches. These studies have

shown that representation of sub-grid scale variations

in surface properties significantly alters model-

estimated energy fluxes.

3.2 A New Remote Sensing-Based Technique

The two paradigms mentioned above have

inherent strengths but are incomplete approaches in
and of themselves. The mosaic approach is an

adequate first-order attempt to account for sub-grid

scale variability, but does not consider within-patch

variability due to fine spatial scale, short time scale

processes such as non-uniform rainfall distribution

and the resulting soil moisture distribution. In some

cases it may be the spatial variability of evaporation,
and not its absolute magnitude, which influences

mesoscale convective precipitation, due to the

resulting differential heating of wet and dry regions.

Applications of the statistical/dynamical approach
have relied on hypothetical statistical distributions of

surface properties. Our technique is a modified

version of the statistical/dynamical method, differing

from previous efforts in its use of high-resolution
remote observations instead of assumed probability

distributions.

In this method, PDFs of remotely-sensed

parameters are used to represent spatial heterogeneity
of corresponding surface properties within each of a

set of landcover patches. We are using landcover type

to define the surface patches; in other applications the

land surface may be partitioned according to

topographic index, soils, or other variables, or a
combination of variables. The connection between the

remotely-sensed quantity may be direct, as in the case
of surface albedo or temperature, or indirect, in the

case of LAI. The proposed technique provides a

mechanism by which statistical properties of small-

scale surface heterogeneity, observed periodically with

high-resolution remote sensors, can be utilized to
simulate the nature of the surface properties (and

associated processes) at the scale at which physical

principles are applicable. In the present investigation,
variability of only one surface property is being

modeled. In practice, multiple variables may be

varied, but the number of model runs increases

dramatically. The basic steps involved in applying

this method using a land surface model are as follows:

(1) For each land surface patch, the PDF is estimated

for the controlling surface variable based on remotely-
sensed data. For most variables, such as surface

temperature and albedo, the distribution is with respect

to a temporally changing mean value, while for others,



suchas LAI, distributionsneed only be defined

seasonally.

(2) A land surface process model is run for each of the

landcover patches. The PDF for the controlling

surface variable for each patch is divided into a
number of intervals.

(3) For each land surface patch, the model is run once
for each PDF interval, with the value of the controlling

variable given by the midpoint value of the interval.

(4) The model outputs for a given surface patch

within the grid cell are calculated by probability-

weighting the outputs obtained for each PDF interval.

(5) The grid cell mean flux is obtained by weighting

the patch means obtained in (4) according to the
fraction of the grid cell occupied by the particular

patch.

3.3 Application - Leaf Area Index Derived from NDVI

In this study, the statistical distribution of NDVI
for each of the landcover classes is used to represent

the variability of LAI. In order to estimate the
distribution of LAI from the observed PDF of NDVI

for each landcover class, we must assume a functional

form of the relationship between the quantities.

Previous studies have used linear (Curran et al., 1992)

or exponential (Nemani and Running, 1989)
relationships. The latter is preferable due to

decreasing sensitivity of NDVI at high LAI levels.
Thus we assume the following functional form:

LAI= a.e b'N°vl (1)

The coefficients a,b are found by simultaneously

solving (1) for two fixed points. To define these

points, we use LAI and NDVI values representative of

a typical or mean value, and a maximum value

associated with a particular landcover type. Because
no LAI measurements were made in CAPE, estimates

of mean and maximum LAI (LAImean, LAImax) have

been set at levels similar to those used in BATS (Table

1).
Statistical properties of the NDVI distributions --

mean, median, mode, standard deviation, percentiles -
have been calculated from the histograms for each

landcover class (Table 1). We use the mode and 99 th

percentile of the NDVI distributions corresponding to
mean and maximum LAI. The NDVI mode

(NDVImoac), is defined here as the midpoint of five

contiguous histogram bins, each having width of .01,

having the maximum aggregate frequency of

occurrence. The maximum value of NDVI (NDVIm_)

is estimated using the 99 th percentile to avoid biasing

due to a very small number of large values which may

result from slight geolocation errors. The mode and

maximum values are given in Table 1.

Having solved for the coefficients in (1), NDVI

frequency distributions as illustrated in Figure 1 may
be converted into LAI frequency distributions by

applying (1) to values representing each NDVI

histogram bin and calculating frequency of occurrence
for a set of LAI values. The result for the short grass

landcover class is shown in Figure 2, where the LAI

bin width is 0.2. The LAI distribution peaks at 2.0

(LAIm_n) and the maximum value is 4.0 (LAlmax).
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Figure 2. Frequency histogram of LAI for landcover

type short grass, derived from NDVI using exponential

relationship.

4. DISCUSSION

The set of frequency histograms for all landcover
classes, as well as the spatial distribution of the classes

within the study area, provides the necessary

information to account for the spatial variability of

surface properties (in this example, LAD in the
context of land surface process modeling. In applying

this technique, every model grid cell is treated as a

mosaic of patches. Sub-grid scale variability within

each patch is incorporated by imposing probability
distributions of the controlling surface properties.

This technique is well-suited for experiments

designed to test model sensitivity to land surface

parameterizations. The following issues may be
addressed through a series of model simulations:



• Which surface variables exhibit the most scale=

dependence or have strong non=linear influences on
surface fluxes?

• In a coupled land-atmosphere model, which

surface properties are the most important to represent

at sub-grid scales, and how much detail is necessary to
characterize them? The answer to this undoubtedly is

a function of the variable and the climate regime.

• How can or should information from fine scales be

aggregated up to model grid cell size?
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5. CONCLUSIONS

A method has been presented for the

representation of sub-grid scale variability of surface

properties within a land surface processes model. The
method uses remotely-sensed data to direcdy or

indirectly estimate probability density functions
(PDFs) of key surface variables. Application of this

technique in a coupled land surface-atmosphere model
requires only grid-scale values of the variables of

interest, obtained from low-resolution satellite imagery

or surface/remote sensing data assimilation. The

PDFs of each controlling surface property are

superimposed on the respective grid-scale values to

simulate sub-grid scale heterogeneity. Sensitivity
studies will be carried out to ascertain the relative

importance of the heterogeneity of several variables,

and the degree to which non-linear property-process

interactions impact large-scale fluxes.
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